MDI-5010 MR

2D Imager Engine

LED Aiming 2D Imager Engine

The information in this document is subject to change without notice.

Document History

Model Number:	MDI-5010 MR	Specification Number:	SS17032
Edition:	2nd	Original Spec Number:	(SS17031)
Date:	25-March-2021		

© 2019 Opticon. All rights reserved.

This manual may not, in whole or in part, be copied, photocopied, reproduced, translated or converted to any electronic or machine readable form without prior written consent of Opticon.

Limited Warranty and Disclaimers

Please read this manual carefully before installing or using the product.

Serial Number

A serial number appears on all Opticon products. This official registration number is directly related to the device purchased. Do not remove the serial number from your Opticon device. Removing the serial number voids the warranty.

Warranty

Unless otherwise agreed in a written contract, all Opticon products are warranted against defects in materials and workmanship for two years after purchase excluding batteries. Opticon will repair or, at its option, replace products that are defective in materials or workmanship with proper use during the warranty period. Opticon is not liable for damages caused by modifications made by a customer. In such cases, standard repair charges will apply. If a product is returned under warranty and no defect is found, standard repair charges will apply. Opticon assumes no liability for any direct, indirect, consequential or incidental damages arising out of use or inability to use both the hardware and software, even if Opticon has been informed about the possibility of such damages.

Packaging

The packing materials are recyclable. We recommend that you save all packing material to use should you need to transport your data collector or send it for service. Damage caused by improper packaging during shipment is not covered by the warranty.

Trademarks

Trademarks used are the property of their respective owners.

Opticon Inc. and Opticon Sensors Europe B.V. are wholly owned subsidiaries of OPTOELECTRONICS Co., Ltd., 12-17, Tsukagoshi 4-chome, Warabi-shi, Saitama, Japan 335-0002. TEL +81-(0) 48-446-1183; FAX +81-(0) 48-446-1184

Support

USA

Rest of World

Phone:	800-636-0090
Email:	support@opticonusa.com
Web:	www.opticonusa.com

Phone: +31235692728 Email: support@opticon.com Web: www.opticon.com

Revision History

Product Name : MDI-5010 MR

Edition	Date	Page	Section	Description of Changes
1st	2019/02/19	-	-	1 st release
and	2021/02/25	25, 26	17.1, 17.3	Added interface connector :Molex 503566-1902
2110	2021/03/25	-	-	Correct errors, adjust format.

Contents

1	Ab	stract	.1
2	Ov	erview	.1
3	Ph	ysical Features	.2
3	.1	Dimensions	. 2
3	.2	Weight	. 2
4	Ele	ectrical Specifications	.3
4	.1	Absolute Maximum Ratings [*]	. 3
4	.2	Recommended Operating Conditions	. 3
4	.3	Current Consumption	. 4
4	.4	Recovery Time from Power Down State	. 5
4	.5	Current Waveform	. 5
5	Ро	wer Mode Transition	.6
6	Int	erface Specifications	.7
6	.1	Interface Signals	. 7
6	.2	Interface Circuit	. 8
7	Ор	tical Specifications	.9
7	.1	Basic Optical Specifications	. 9
7	.2	Aiming Specifications	10
8	Те	chnical Specifications	11
8	.1	Barcode Test Sample	12
8	.2	Scan Area and Depths of Field	13
8	.3	Depths of Field	14
8	.4	Print Contrast Signal	15
8	.5	Minimum Resolution	15
8	.6	Barcode Width	15
8	.7	Pitch, Skew, and Tilt	16
8	.8	Curvature	16
8	.9	Motion Tolerance	17
8	.10	Scan Speed	18
9	En	vironmental Specifications	19
9	.1	Temperature	19
9	.2	Humidity	19
9	.3	Ambient Light Immunity	19
9	.4	Electrical Noise	20
9	.5	Vibration Strength	20
9	.6	Drop Impact Strength	20
10	Int	egration Specifications	21
11	Re	gulatory Specifications	21
1	1.1	LED Safety	21
12	Ro	HS	21

SPECIFICATIONS MANUAL

13	Re	eliabilities	21
14	Pre	ecautions	21
15	Pre	oduct Label	22
16	Ра	ckaging Specifications	23
16	5.1	Packaging	
16	6.2	Package Size	
17	Ме	echanical Drawing	25
17	7.1	Camera (MSI-5010)	
17	7.2	Decoder Board (DBM-4050)	
17	7.3	FPC	

Table of Figures

Figure 1: Dimensions of the MDI-5010	2
Figure 2 : Current Waveform	5
Figure 3: Power Mode Transition	6
Figure 4: Interface Circuit	8
Figure 5: Aiming Pattern	10
Figure 6: Test Condition of Depth of Field	11
Figure 7: Scan Area and Depth of Fields	13
Figure 8: Wide Bar Code	15
Figure 9: Pitch, Skew, and Tilt	16
Figure 10: Curvature	16
Figure 11: Motion Tolerance	17
Figure 12 : Scan Speed	18
Figure 13: Serial Label	22
Figure 14 : Packaging	
Figure 15 : Camera (MSI-5010)	25
Figure 16 : Decoder Board (DBM-4050)	26
Figure 17: FPC	26
-	

1 Abstract

This manual provides specifications for the MDI-5010 MR imager scan engine.

2 Overview

The MDI-5010 is a laser aiming, imager based, barcode scan engine with a separated camera and decoder board that enables high speed scanning of 1D (linear) and 2D barcodes, as well as OCR fonts.

The main features of the MDI-5010 are as follows:

· Wide range reading

The MDI-5010 with its 1 mega pixel wide lens (horizontal 48°) enables wide range reading and high resolution image acquisition.

• High-speed reading

The extremely high performance decoder and 120fps CMOS sensor used in the MDI-5010 ensures stress-free scanning and fast response regardless of reading angle, even with poor quality barcodes (damaged, low contrast etcetera), movement and vibration, and poor lighting conditions.

- Green LED aiming and Warm-White LED Illumination
 A well-defined single line of green LED light and efficient warm-white LED illumination makes it
 easy to aim the scan engine while providing safety and long life.
- Low power consumption

The power consumption in operating, standby, and low power states has been drastically reduced. Various power saving settings can be configured to optimize the power consumption for your particular application.

- Auto trigger / Motion tolerance Automatically detects the moving target with the auto trigger function and then scans instantaneously.
- Editing function

A new function, "Data Editing Program," captures up to 16 barcodes on multiple images at once. The output editing process, such as GS1 format, can also be configured easily.

- Various interfaces The MDI-5010 supports the UART interface and USB interface. You can also easily switch between the interfaces.
- RoHS compliance The MDI-5010 is a RoHS compliant product, as declared by Optoelectronics Co., Ltd.

3 Physical Features

3.1 **Dimensions**

Camera Engine (MSI-5010):

D: 13.4 × W: 21.5 × H: 11.8 (mm)

Decoder Board (DBM-4050):

D: 20.8 × W: 25.1 × H: 3.2 (mm)

FPC:

D: 24.0 × W: 6.0 × H: 0.3 (mm)

Figure 1: Dimensions of the MDI-5010

3.2 Weight

Camera Engine (MSI-5010):	3.5 grams (max)
Decoder Board (DBM-4050):	2.5 grams (max)

4 Electrical Specifications

4.1 Absolute Maximum Ratings*

Item	Symbol	Rated Value	Unit
Power Supply Voltage (V _{CC} to GND)	Vcc	-0.3 to 7.0	V
Input Voltage	Vı	-0.3 to V _{CC} +0.3	V

* Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

4.2 Recommended Operating Conditions

ltem		Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage		Vcc		3.0	3.3/5.0	5.5	V
Input Voltago	Low	VIL		0	-	0.15	V
input voltage	High	Vін		Vcc -0.4	-	Vcc	V
Output Voltage	Low	V _{OL}	I _{OL =} 600μA		-	0.55	V
	High	Vон	I _{он =} -20µА	0.67*Vcc	-	Vcc	V
Output current	Low	lol	$V_{cc} = 3.0V$			-4	mA
	High	Іон	$V_{cc} = 3.0V$			4	mA

* Measured at the MDI-5010 connector

4.3 Current Consumption

(IF:UART/USB, V _{CC} = 3.3V/5.0V T _A = 25°C							25°C)
ltem	State	Symbol	Conditions	Min.	Тур.	Max.	Unit
Peak Rush Current *	Boot	I _{PK}	-	-	800	1000	mA

* Measured at the MDI-5010 connector

UART

[Vcc = 3.3V]

(IF:UART, $T_A = 25^{\circ}C$)

Item	State	Recovery time *1	Symbol	Conditions	Min.	Тур.	Max.	Unit
Operating Current	Read	-	IOP	-	-	390	520	mA
Standby Current	Standby	0 ms	Istb	-	-	24		mA
Low Power Current	Low Power	41 ms	I _{LOW}	Configured	-	1.7		mA

[Vcc = 5.0V]

(IF:UART, T_A = 25 °C) Recovery Item Conditions State Symbol Min. Тур. Max. Unit time *1 Operating 270 390 Read mΑ _ lор _ Current Standby Standby 0 ms 22 ISTB _ mΑ -Current Low Power Low Power 41 ms LOW Configured _ 1.3 mΑ Current

*1 Recovery time is time until ready to scan.

* Refer to "Serial Interface Specifications" for details.

USB

 $[V_{CC} = 3.3V]$

(IF:USB, $T_A = 25^{\circ}C$)

Item	State	Recovery time *1	Symbol	Conditions	Min.	Тур.	Max.	Unit
Operating Current	Read	-	I _{OP}	-	-	390	520	mA
Standby Current*2	Standby	0 ms	I _{STB}	-	-	28		mA
Low Power Current*2	Low Power	43 ms	Low	Configured*2	-	2.1		mA

[V_{CC} = 5.0V]

(IF ·USB	$T_{A} = 25^{\circ}C$
(IF.03D,	$I_A = 23 \text{ C}$

Item	State	Recovery time *1	Symbol	Conditions	Min.	Тур.	Max.	Unit
Operating Current	Read	-	I _{OP}	-	-	270	390	mA
Standby Current*2	Standby	0 ms	I _{STB}	-	-	21		mA
Low Power Current*2	Low Power	43 ms	Low	Configured*2	-	1.6		mA

*1 Recovery time is time until ready to scan.

*2 Current value when USB is "Selective Suspend" mode. When using as USB-COM (USB as virtual COM), use USB driver "Opticon USB Code Reader driver" version 3.x.x.x.

* Refer to "Serial Interface Specifications" for details.

4.4 Recovery Time from Power Down State

(IF=UART/USB, V_{CC} = 3.3V, 5.0V T_A = 25°C)

Item	Mode	Conditions	Min	Тур.	Max	Unit
Poot time	Normal boot		-	610		ms
	Fast Boot Mode	Configured*	-	525		ms

* Refer to "Serial Interface Specifications" for details.

4.5 Current Waveform

* When Low Power Mode is enabled, the MDI-5010 automatically enters Low Power state after Power On.

Figure 2: Current Waveform

5 Power Mode Transition

Figure 3: Power Mode Transition

- *1 Options are available to adjust the start-up time: Fast Boot and Normal Boot.
- *2 When Low Power is enabled, the MDI-5010 automatically enters Low Power mode after the specified Standby time.

Status	Description			
Read	White LED illumination, green aiming light, and process reading.			
Standby	Ready to read. The scan engine can immediately read barcodes.			
Low Power	Low current consumption status. The specified time to change from Standby is configurable.			
AIM	The green aiming lights when the AIM signal is on.			

6 Interface Specifications

6.1 Interface Signals

The connector used is equivalent to the one produced by IRISO Electronics Co., Ltd. Product No.: 9681-12 (12-pin, 0.5 mm pitch bottom contact, 0.3 mm thick FPC/FFC connector)

No.	Name	Function	I/O	Conditions	State	Note
1	TRIGn	Trigger	In		L: Start operation H: No action	100kΩ pull up on scan engine
2		Recovery signal from Low Power state	In		L: Recover from low power state H: No action	100kΩ pull up on
2		Aiming control signal in other states than Low Power	In		L: Aiming LED on H: Aiming LED off	scan engine
3	GR_LEDn	Good read LED	Out		L: LED on H: LED off	4.7kΩ pull up on
5	EX_ILLUM	Control of an external light source.	Out	Configured	L: External Illumination On H: External Illumination Off	scan engine
4	BUZZERn	Buzzer	Out		ACTIVE: PWM signal (frequency and duration configurable) IDLE: Steady high or low (configurable idle state)	A transistor or FET should be used to drive a buzzer. 100kΩ pull up on scan engine
5	POWERDWN	Indicates Low Power state	Out		L: Normal state H: Low Power state	100kΩ pull up on scan engine
6	RTS	Communication control signal to host system	Out			10kΩ pull up on scan engine
7	CTS	Communication control signal from host system	In	Interface configured as UART		100kΩ pull up on scan engine
1	USB+	D+ signal for USB	In/ Out	Interface configured as USB		
8	TxD	Transmitted data signal	Out			$10k\Omega$ pull up on scan engine
0	RxD	Received data signal	In	Interface configured as UART		100kΩ pull up on scan engine
9	USB-	D- signal for USB	In/ Out	Interface configured as USB		
10	GND	System ground				
11	Vcc	Power input	In		3.3V / 5.0V	
12	Reserve		In			N.C

* Refer to "Serial Interface Specifications" for details.

6.2 Interface Circuit

Signal Name	Circuit
AIM/WAKEn RxD CTS	
TRIGn	
RTS TxD	
GR_LEDn	Ч.7К 4.7К
BUZZERn POWERDWN	
USB+ USB-	

Figure 4: Interface Circuit

7 Optical Specifications

7.1 Basic Optical Specifications

	Characteristics	
Scan method	CMOS area sensor (black and white)	-
Number of effective pixels	(H) × (V)	1280 × 800
Image capture speed	Frame rate ^{*1}	120 fps
Sensor shutter speed	Minimum shutter speed	30 µs
Focal distance	From the front edge of scan engine	Approx. 165 mm
	Horizontal	Approx. 48.0°
View angle	Vertical	Approx. 30.8°
	Diagonal	Approx. 55.8°
	Warm white LED	-
Auxiliary light source (LED × 1)	Color temperature	2600 to 3700K
	Maximum Optical Efficiency *2	173 lm/W
	Single Line Green LED	-
Light source for aiming (LED x 1)	Peak Wave Length	525 to 535 nm
	Maximum Optical Efficiency *2	87.4 lm/W

*1 The fastest speed of image capture *2 The reference value extracted from the LED datasheet

7.2 Aiming Specifications

Aiming is used to indicate the appropriate reading distance by projecting a bar of green light.

The aiming specifications are as follows:

- The optical axis of the imaging field of view and the center of the horizontal aiming bar coincide at a distance of L=120±20 optical axis of the imaging fiscan engine.
- The width of the aiming bar at a distance of L=120 mm is 70%dth of the aiming bar at a distance of

Figure 5: Aiming Pattern

8 Technical Specifications

Unless otherwise specified, the conditions for technical specifications are as follows.

Conditions

Ambient Temperature and Humidity Ambient Light Pitch Angle Skew Angle Tilt Angle Code Position Curvature Power Supply Voltage PCS (1D and 2D) Scanning Test Room temperature and room humidity 100 to 200 lux (on the surface of a barcode) $\alpha = 0^{\circ}$ $\beta = 15^{\circ}$ $\gamma = 0^{\circ}$ Center of the image $R = \infty$ 3.3 and 5.0 V 0.9 or higher Accept the performance with 90% or more success rate for 10 scan attempts. Specified in Chapter 8.1

Barcode Test Sample (1D and 2D)

8.1 Barcode Test Sample

1D Barcode test labels

Code 39	
---------	--

Resolution	Symbology	PCS (MRD)	Size (mm)	No. of Digits
0.1 mm (4 mil)	Code 39	0.0 (80)	26 × 10	16
0.127 mm (5 mil)			32 × 10	15
0.20 mm (7.9 mil)		0.9 (00)	110 × 10	34
0.508 mm (20 mil)			43 × 25	4

Code 128

<u>•••••</u>				
Resolution	Symbology	PCS (MRD)	Size (mm)	No. of Digits
0.20 mm (7.9 mil)	Code 128	0.9 (80)	42 × 10	16

UPC/EAN

Resolution	Symbology	PCS(MRD)	Size (mm)	No. of Digits
0.260 mm (10 mil)	UPC/EAN	0.9/0.3 (80/23)	25 × 20	12/13
0.330 mm (13 mil)	UPC/EAN	0.9/0.3 (80/23)	31.5 × 24.5	12/13

GS1 DataBar / Composite test labels

GS1	DataBar	Limited
-----	---------	---------

Resolution	Symbology	PCS(MRD)	Size (mm)	No. of Digits
0.169 mm (6.7 mil)	Limited	0.0 (90)	12 × 1.8	14
0.169 mm (6.7 mil)	Limited-Composite	0.9 (00)	12 × 3.0	26

2 D test labels

PDF417

Resolution	Error Correction	PCS(MRD)	Size (mm)	No. of Character
0.169 mm (6.7 mil)		0.9 (80)	23 × 10	58
0.254 mm (10 mil)	Level-3		35 × 15	

QR Code: Model-2

Resolution	Error Correction	PCS(MRD)	Size (mm)	No. of Character	
0.169 mm (6.7 mil)	NA	0.9 (80)	5 × 5	4.4	
0.381 mm (15 mil)	IVI		11 × 11	44	

Data Matrix

Resolution	Model	PCS(MRD)	Size (mm)	No. of Character	
0.169 mm (6.7mil)	FCC200	FCC200 0.0 (80)		40	
0.254 mm (10mil)	ECC200	0.9 (60)	6 × 6	40	

Note: The size is the outline dimension excluding the quiet zone.

8.2 Scan Area and Depths of Field

The scan area is measured from the front edge of the scan engine.

Figure 7: Scan Area and Depth of Fields

Note: The depth of field depends on the view angle and symbol length. The depth of field values are the typical values measured at an ambient temperature of 25°C.

8.3 Depths of Field

The scan area is measured from the front edge of the scan engine.

			0	5		(T _A = 25°C)
Resolution	Symbology		Guarante	ed Value	Typica	l Value
mm (mil)	type		Near	Far	Near	Far
0.127 mm	Code 39	0.9	121 mm	167 mm	95 mm	189 mm
(5 mil)		(80)	(4.8″)	(6.6″)	(3.7″)	(7.4″)
0.508 mm	Code 39	0.9	65 mm	400 mm	53 mm	524 mm
(20 mil)		(80)	(2.6″)	(15.7″)	(2.1″)	(20.6″)
0.2 mm	Code 128	0.9	79 mm	221 mm	64 mm	284 mm
(7.9 mil)		(80)	(3.1″)	(8.3″)	(2.5″)	(11.2″)
0.26 mm	UPC/EAN	0.9	54 mm	277 mm	45 mm	335 mm
(10.4 mil)		(80)	(2.1″)	(10.9″)	(1.8″)	(13.2″)
0.33 mm	UPC/EAN	0.9	52 mm	313 mm	42 mm	385 mm
(13 mil)		(80)	(2.1″)	(12.3″)	(1.7″)	(15.2″)
0.169 mm	PDF417	0.9	98 mm	193 mm	78 mm	225 mm
(6.7 mil)		(80)	(3.9″)	(7.6″)	(3.1″)	(8.9″)
0.254 mm	PDF417	0.9	64 mm	241 mm	48 mm	299 mm
(10 mil)		(80)	(2.5″)	(9.5″)	(1.9″)	(11.8″)
0.169 mm	QR Code	0.9	128 mm	149 mm	95 mm	186 mm
(6.7 mil)		(80)	(5.0″)	(5.9″)	(3.7″)	(7.3″)
0.381 mm	QR Code	0.9	46 mm	221 mm	36 mm	322 mm
(15 mil)		(80)	(1.8″)	(8.7″)	(1.4″)	(12.7″)
0.169 mm	Data Matrix	0.9	136 mm	142 mm	99 mm	180 mm
(6.7 mil)		(80)	(5.4″)	(5.6″)	(3.9″)	(7.1″)
0.254 mm	Data Matrix	0.9	107 mm	178 mm	77 mm	226 mm
(10 mil)		(80)	(4.2″)	(7.0″)	(3.0″)	(8.9″)

8.4 Print Contrast Signal

PCS 0.3 or higher

Conditions	
MRD	23% and higher
	(70% or higher reflectivity of space and quiet zone)
Distance	130 mm from the front edge of the scan engine
Barcode Sample	UPC specified in Chapter 8.1 (Resolution: 0.33 mm, PCS: 0.3)
MRD = Minimum reflect	ctance of white space - Maximum reflectance of black bar

 $PCS = \frac{\text{Reflectance of white space - Reflectance of black bar}}{\text{Reflectance of white space}}$

8.5 Minimum Resolution

1D Code: 0.1 mm (4 mil) Code 39 specified in Chapter 8.1 GS1-DataBar: 0.169 mm (6.7 mil) GS1 DataBar Limited specified in Chapter 8.1 Stacked Code: 0.169 mm (6.7 mil) PDF417, GS1 DataBar Limited Composite specified in Chapter 8.1 2D Code: 0.169 mm (6.7 mil) QR Code and Data Matrix specified in Chapter 8.1

Conditions	
Angle	$\alpha = 0^{\circ}, \beta = +15^{\circ}, \gamma = 0^{\circ}$
Curvature	R = ∞

8.6 Barcode Width

110 mm

Conditions

Barcode Sample Distance Angle Curvature 0.20 mm Code 39 specified in Chapter 8.1 160 mm from the front edge of the scan engine $\alpha = 0^{\circ}, \beta =+15^{\circ}, \gamma = 0^{\circ}$ R = ∞

Figure 8: Wide Bar Code

8.7 Pitch, Skew, and Tilt

Pitch: $\alpha = \pm 65^{\circ}$ Skew: $\beta = \pm 65^{\circ}$ Tilt: $\gamma = 360^{\circ}$

Conditions

Barcode Sample0.508 mm Code 39 specified in Chapter 8.1Distance180 mm from the front edge of the scan engineCurvature $R = \infty$

For pitch angle and tilt angle measurements, set the skew angle β to +15°

Figure 9: Pitch, Skew, and Tilt

R ≧ 20 mm

8.8 Curvature

0.33 mm 12-digit UPC

Conditions

Barcode Sample Distance Angle 0.33 mm UPC specified in Chapter 8.1 130 mm from the front edge of the scan engine $\alpha = 0^{\circ}, \beta = +15^{\circ}, \gamma = 0^{\circ}$

Figure **10***: Curvature* Note: Scanning may fail due to specular reflection of the illumination LED when reflectivity is high.

8.9 Motion Tolerance

```
2.54 m/s
```

Conditions

Ambient Temperature and Humidity Ambient Light Distance Skew Curvature PCS Barcode Sample Room temperature and Room humidity 500 lux to 1000 lux (on the surface of the barcode) 180 mm from the front edge of the scan engine $\alpha = 0^{\circ}, \beta =+15^{\circ}, \gamma = 0^{\circ}$ $R = \infty$ 0.9 or higher

UPC with 0.33 mm resolution specified in Chapter 8.1

Figure 11: Motion Tolerance

Note: Successful reading at the indicated speed cannot be guaranteed. Reading may fail due to specular reflection of the illumination LED when the reflectivity is high.

8.10 Scan Speed

The number of scans per second 1D code: 30 Scans/Second 2D code: 20 Scans/Second

Conditions

Ambient Temperature and Humidity Ambient Light Distance Scan Mode Angle Code position PCS (1D and 2D) 1D Code 2D Code Room temperature and Room humidity 500 lux to 1000 lux (on the surface of a barcode) 180 mm from the front edge of the scan engine Continuous scan $\alpha = 0^{\circ}, \beta =+15^{\circ}, \gamma = 0^{\circ}$ Center of the image 0.9 or higher UPC/EAN with 0.33 mm specified in Chapter 8.1 Data Matrix with 0.254 mm specified in Chapter 8.1

Center of Image

Figure **12***: Scan Speed* Note: The performance is not guaranteed in other conditions.

9 Environmental Specifications

9.1 Temperature

Operating Temperature:	-20 to 60 °C
Storage Temperature:	-40 to 70 °C

Conditions	
Barcode Sample	0.33 mm UPC specified in Chapter 8.1
Distance	130 mm from the front edge of the scan engine
Angle	$\alpha = 0^{\circ}, \beta = +15^{\circ}, \gamma = 0^{\circ}$
Curvature	R = ∞
Scanning Test	Read at intervals of 300 ms
Power Supply Voltage	3.3 and 5.0 V

9.2 Humidity

Operating Humidity:	5 to 90% RH (no condensation, no frost)
Storage Humidity:	5 to 90% RH (no condensation, no frost)

Conditions

0.33 mm UPC specified in Chapter 8.1
130 mm from the front edge of the scan engine
$\alpha = 0^{\circ}, \beta = +15^{\circ}, \gamma = 0^{\circ}$
R = ∞
3.3 and 5.0 V

9.3 Ambient Light Immunity

Scanning performance is guaranteed when the illuminance on the surface of a barcode is between zero and the following values:

Incandescent Light:	10,000 lux
Fluorescent Light:	10,000 lux
Sunlight:	100,000 lux

Conditions

Barcode Sample	0.33 mm UPC specified in Chapter 8.1
Distance	180 mm from the front edge of the scan engine
Angle	$\alpha = 0^{\circ}, \beta = +15^{\circ}, \gamma = 0^{\circ}$
Curvature	R = ∞
Power Supply Voltage	3.3 and 5.0 V

Note: Scanning performance is guaranteed as long as direct ambient light and specular reflection from the illumination LED does not enter the light receiving section of the MDI-5010.

9.4 Electrical Noise

a) Scanning Symbologies

There shall be no abnormalities in the output signals when sinusoidal electrical noise (50 Hz to 100 kHz, smaller than 0.1 Vp-p) is added to the power supply line.

Conditions	
Scan Method	Continuous scanning
Barcode Sample	0.33 mm UPC specified in Chapter 8.1
Distance	130 mm from the front edge of the scan engine
Angle	$\alpha = 0^{\circ}, \beta = +15^{\circ}, \gamma = 0^{\circ}$
Curvature	R = ∞
Scanning Test	Read at intervals of 300 ms
Power Supply Voltage	3.3 and 5.0V
Distance Angle Curvature Scanning Test Power Supply Voltage	130 mm from the front edge of the scan engin $\alpha = 0^{\circ}, \beta = +15^{\circ}, \gamma = 0^{\circ}$ R = ∞ Read at intervals of 300 ms 3.3 and 5.0V

b) Image Data Acquisition

There shall be no excessive noise or misalignments in acquired images when sinusoidal electrical noise (50 Hz to 100 kHz, smaller than 20 mVp-p) is added to the power supply line.

Note: Electrical noise may affect the quality of captured images. The signal processing system of the MDI-5010 is specifically designed to scan symbologies, not acquiring image data. Therefore, the quality of images captured by the MDI-5010 may be lower than that of general purpose digital cameras.

9.5 Vibration Strength

There shall be no sign of malfunction of the MDI-5010 after the following test. <u>Vibration Test:</u> Increase the frequency of the vibration from 12Hz to 200Hz at accelerated velocity $32.3m/s^2(3.3G)$ for ten minutes. Continue this routine for 2 hours in the X-direction, 2 hours in the Ydirection, and 4 hours in the Z-direction.

Conditions	
Barcode Sample	0.33 mm UPC specified in Chapter 8.1
Distance	130 mm from the front edge of the scan engine
Angle	$\alpha = 0^{\circ}, \beta = +15^{\circ}, \gamma = 0^{\circ}$
Curvature	R = ∞
Power Supply Voltage	3.3 and 5.0 V

9.6 **Drop Impact Strength**

There shall be no sign of malfunction of the MDI-5010 after the following test. <u>Drop test:</u> Fix the MDI-5010 in a specific aluminium made dummy case 100x70x50 (WDH mm) and drop it a total of 10 times at top, bottom, front, back, left, right, top-left, top-right, bottom-left and bottom-right faces, from a height of 1.8 meters onto a concrete floor.

Conditions	5
------------	---

Barcode Sample	0.33 mm UPC specified in Chapter 8.1
Distance	130 mm from the front edge of the scan engine
Angle	$\alpha = 0^{\circ}, \beta = +15^{\circ}, \gamma = 0^{\circ}$
Curvature	R = ∞
Power Supply Voltage	3.3 and 5.0 V

10 Integration Specifications

Connection between the MDI-5010 and a host system:

Use an FFC or FPC cable developed in accordance with specifications provided by the connector manufacturer to connect the MDI-5010 with the host system.

11 Regulatory Specifications

11.1 LED Safety

IEC62471:2006 Exempt Group

12 **RoHS**

The MDI-5010 is compliant with RoHS.

Note: RoHS: The restriction of the use of certain hazardous substances in electrical and electronic equipment. Directive 2011/65/EU Commission Delegated Directive (EU) 2015/863

13 Reliabilities

MTBF: 364154 hours

Note: The reliability of the MDI-5010 is guaranteed if it is operated under normal operating conditions within the range of advised operating temperature and without excessive electrical or mechanical shock.

14 Precautions

- All work-benches, tools, measuring instruments and any part of the human body which may come into contact with the MDI-5010 must undergo antistatic treatments.
- Do not touch the optical and electrical components. When handling the MDI-5010, hold it by the camera body.
- Avoid handling the MDI-5010 in a dusty area. If dust gets on the MDI-5010, gently blow it off with dry air. Direct contact of swabs on optical parts may reduce performance.
- Do not drop the MDI-5010.

The connector used is produced by IRISO Electronics Co., Ltd. Product No.: 9681-12 (12-pin, 0.5 mm pitch, 0.3 mm thick) Recommended Cable Length: 50 mm (max)

15 Product Label

The product labels are affixed to the MDI-5010 as shown below.

DBM-4050 Decoder Board

The details of the label are as follows.

MSI-5010 Camera Engine

Figure 13: Serial Label

The serial number (seven-digit) starts from 1000001 and is sequentially numbered, regardless of lot number.

Note: B stands for UART interface in default. DC stands for USB-COM interface in default. D stands for USB-HID interface in default.

16 Packaging Specifications

16.1 Packaging

A carton box: 175 pieces MDI-5010 (MAX)

SPECIFICATIONS MANUAL

Figure 14: Packaging

Product name, number of products contained within and the name of the manufacturer are displayed on the packing box.

16.2 Package Size

295 × 365 × 225 (DWH mm) (Outside dimensions)

Note: The "RO" mark labelled on the package tray or package box guarantees that the applicable product has passed our test of RoHS restrictions compliance (The restriction of the use of certain hazardous substances in electrical and electronic equipment, Directive 2011/65/EU, Commission Delegated Directive (EU) 2015/863.). However, this mark does not have any legal weight in the European Union.

17 Mechanical Drawing

17.1 Camera (MSI-5010)

Figure 15: Camera (MSI-5010)

[Unit: mm]

17.2 Decoder Board (DBM-4050)

Figure 16: Decoder Board (DBM-4050)

[Unit: mm]

17.3 FPC

Figure 17: FPC

[Unit: mm]

E OPTICON